Washtenaw Community College Comprehensive Report

UAT 208 Introduction to Oilless Magnetic Bearing Centrifugal Compressors (UA 6015) Effective Term: Spring/Summer 2025

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers **Department:** United Association Department (UAT Only) **Discipline:** United Association Training **Course Number: 208** Org Number: 28200 Full Course Title: Introduction to Oilless Magnetic Bearing Centrifugal Compressors (UA 6015) Transcript Title: Intro Oilless Magnet Comp 6015 Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Course Change **Change Information: Course title Course description Outcomes/Assessment Objectives/Evaluation**

Rationale: Course updated to reflect current trends and technology in the industry.

Proposed Start Semester: Spring/Summer 2025

Course Description: In this course, students will be introduced to magnetic bearing technology for Turbocor Heating, Ventilation, and Cooling (HVAC) compressors. Topics will include compressor history, theory of operation, components, and operation. Students will download, install, and utilize monitoring software. Students will explore Danfoss Turbocor compressor (DTC) equipment and other magnetic bearing compressors. Upon course completion, students will have the opportunity to take the DTC compressor certification exam. Limited to United Association program participants.

Course Credit Hours

Variable hours: No Credits: 1.5 The following Lecture Hour fields are not divisible by 15: Student Min ,Instructor Min Lecture Hours: Instructor: 22.5 Student: 22.5 The following Lab fields are not divisible by 15: Student Min, Instructor Min Lab: Instructor: 1.5 Student: 1.5 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 24 Student: 24 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

<u>College-Level Reading and Writing</u>

College-level Reading & Writing

College-Level Math

Requisites

General Education

Degree Attributes Below College Level Pre-Regs

Request Course Transfer Proposed For:

Student Learning Outcomes

1. Perform test procedures for the DTC compressor.

Assessment 1

Assessment Tool: Outcome-related demonstration Assessment Date: Spring/Summer 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Skills checklist Standard of success to be used for this assessment: 80% of the students will score 80% or higher. Who will score and analyze the data: U.A. Instructors

2. Troubleshoot DTC internal components using monitoring software (SMT) and 9 pin / USB converter. Assessment 1

Assessment Tool: Outcome-related demonstration Assessment Date: Spring/Summer 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Skills checklist Standard of success to be used for this assessment: 80% of the students will score 80% or higher. Who will score and analyze the data: U.A. Instructors

3. Disassemble, identify and reassemble a magnetic bearing DTC compressor.

Assessment 1

Assessment Tool: Outcome-related demonstration

- Assessment Date: Spring/Summer 2025
- Assessment Cycle: Every Three Years
- Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Skills checklist

Standard of success to be used for this assessment: 80% of the students will score 80% or higher.

Who will score and analyze the data: U.A. Instructors

Course Objectives

- 1. Discuss the history of compressors and their role in the HVAC industry.
- 2. Discuss safety concerns and personal protective equipment (PPE) when working with compressors and equipment.
- 3. Discuss the purpose and demonstrate the installation of the test harness.
- 4. Explain the test procedure for a DTC compressor.
- 5. Demonstrate the test procedure for a DTC compressor and record the results.

curricunet.com/washtenaw/reports/course_outline_HTML.cfm?courses_id=12021

- 6. Demonstrate the installation, operation, and troubleshooting capabilities of Turbotool SMT app on mobile devices.
- 7. Discuss and demonstrate the disassembly of topside and service side electronics using instructional resources.
- 8. Explain the disassembly of serviceable mechanical components using instructional resources.
- 9. Demonstrate how to disassemble and reassemble DTC compressors.
- 10. Troubleshoot mechanical parts to find pre-determined faults and failures.
- 11. Demonstrate the installation of Turbotool software and connection to the compressor.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

<u>Reviewer</u>	Action	<u>Date</u>
Faculty Preparer:		
Tony Esposito	Faculty Preparer	Jan 23, 2025
Department Chair/Area Director:		
Marilyn Donham	Recommend Approval	Jan 28, 2025
Dean:		
Eva Samulski	Recommend Approval	Jan 28, 2025
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Apr 24, 2025
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Apr 26, 2025
Vice President for Instruction:		
Brandon Tucker	Approve	Apr 28, 2025

Washtenaw Community College Comprehensive Report

UAT 208 Introduction to Oil-Less Magnetic Bearing Centrifugal Compressors (UA 6015) Effective Term: Fall 2020

Course Cover

Division: Advanced Technologies and Public Service Careers Department: United Association Department **Discipline:** United Association Training **Course Number: 208** Org Number: 28200 Full Course Title: Introduction to Oil-Less Magnetic Bearing Centrifugal Compressors (UA 6015) Transcript Title: Intro Oil-Less Magne Burn 6015 Is Consultation with other department(s) required: No **Publish in the Following:** Reason for Submission: New Course **Change Information:** Rationale: New United Association course Proposed Start Semester: Fall 2020 Course Description: In this course, students will be introduced to magnetic bearing technology for Heating, Ventilation, Air Conditioning (HVAC) compressors. Topics include compressor history and theory, manufacturer-specific component operation and testing procedures. Students will also learn about monitoring software, from installation and communication to testing and troubleshooting issues. In addition, students will gain hands-on experience working with Danfoss Turbocor, Johnson Controls and Trane magnetic bearing compressors and equipment. Instructional materials will be provided for student

Course Credit Hours

Variable hours: No Credits: 1.5 The following Lecture Hour fields are not divisible by 15: Student Min ,Instructor Min Lecture Hours: Instructor: 22.5 Student: 22.5 The following Lab fields are not divisible by 15: Student Min, Instructor Min Lab: Instructor: 1.5 Student: 1.5 Clinical: Instructor: 0 Student: 0

use at their local Training Center. Limited to United Association program participants.

Total Contact Hours: Instructor: 24 Student: 24 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

General Education

Degree Attributes

Below College Level Pre-Reqs

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Perform test procedures for the Danfoss Turbocor (DTC) compressor.

Assessment 1

Assessment Tool: Demonstration Assessment Date: Fall 2020 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Observational checklist Standard of success to be used for this assessment: 80% of the students will score 80% or higher. Who will score and analyze the data: U.A. instructors

2. Troubleshoot DTC internal components using monitoring software (SMT) software and 9 pin / USB converter.

Assessment 1

Assessment Tool: Demonstration- printout software results Assessment Date: Fall 2020 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Rubric Standard of success to be used for this assessment: 80% of the students will score 80% or higher. Who will score and analyze the data: U.A. instructors

3. Disassemble, identify and reassemble magnetic bearing compressor manufactured by Danfoss, Trane and Johnson Control.

Assessment 1

Assessment Tool: Demonstration

Assessment Date: Fall 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Skills checklist

Standard of success to be used for this assessment: 80% of the students will score 80% or higher.

Who will score and analyze the data: U.A. instructors

Course Objectives

- 1. Discuss the history of compressors and their role in the HVAC industry.
- 2. Discuss safety concerns and personal protective equipment (PPE) when working with compressors and equipment.
- 3. Discuss the purpose and demonstrate the installation of the test harness.
- 4. Explain and demonstrate the test procedure for a DTC compressor, and record the results.
- 5. Demonstrate the installation, operation, and troubleshooting capabilities of Turbotool app on mobile devices.
- 6. Discuss and demonstrate STM software and connection to compressor.

https://curricunet.com/washtenaw/reports/course_outline_HTML.cfm?courses_id=10902

- 7. Discuss and demonstrate the disassembly of topside and service side electronics using instructional resources.
- 8. Discuss and demonstrate disassembly of serviceable mechanical components.
- 9. Demonstrate the disassembling and reassembling of Danfoss, Trane and Johnson Control magnetic bearing compressors.
- 10. Troubleshoot mechanical parts to to find pre-determined faults and failures.
- 11. Compare and contrast the equipment associated with Trane, Danfoss, and Johnson Control compressors and their functions.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

<u>Reviewer</u>	Action	<u>Date</u>
Faculty Preparer:		
Tony Esposito	Faculty Preparer	Jun 02, 2020
Department Chair/Area Director:		
Marilyn Donham	Recommend Approval	Jun 05, 2020
Dean:		
Jimmie Baber	Recommend Approval	Jun 10, 2020
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Oct 16, 2020
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Oct 20, 2020
Vice President for Instruction:		
Kimberly Hurns	Approve	Oct 22, 2020