Washtenaw Community College Comprehensive Report

WAF 226 Specialized Welding Procedures Effective Term: Winter 2012

Course Cover

Division: Vocational Technologies **Department:** Welding and Fabrication **Discipline:** Welding and Fabrication

Course Number: 226 Org Number: 14610

Full Course Title: Specialized Welding Procedures **Transcript Title:** Specialized Welding Procedures

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog , Time Schedule , Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:
Course description

Pre-requisite, co-requisite, or enrollment restrictions

Outcomes/Assessment Objectives/Evaluation

Rationale: Regular three year review Proposed Start Semester: Winter 2012

Course Description:

In this course, students are exposed to uncommon and unique welding process and material combinations. Four welding processes, GMAW, GTAW, SMAW and OFW will be performed on ferrous and non-ferrous materials. Advanced welding theories, filler metal classification, identification and proper selection for material type is addressed.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 90 Student: 90 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 120 Student: 120

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

Academic Reading and Writing Levels of 6

and

Prerequisite

WAF 123 minimum grade "C" and

Prerequisite

WAF 124 minimum grade "C" and

Prerequisite

WAF 215 minimum grade "C"

General Education Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Recognize and apply welding vocabulary.

Assessment 1

Assessment Tool: Written exam **Assessment Date:** Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 80% of students will score

90% or higher

Who will score and analyze the data: Departmental faculty

2. Recognize and interpret welding theory.

Assessment 1

Assessment Tool: Written exam **Assessment Date:** Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 80% of students will score

90% or higher

Who will score and analyze the data: Departmental faculty

3. Perform standard welds using the Oxy-fuel welding process on materials such as aluminum, stainless, copper and cast iron in various positions.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in

meeting AWS D1.1 code.

Standard of success to be used for this assessment: 80% of students will

create welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

4. Weld a butt, lap and tee joint on aluminum and stainless steel in the vertical position with the GTAW process.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in

meeting AWS D1.2 and D1.6 codes.

Standard of success to be used for this assessment: 80% of students will

create welds in accordance with AWS D1.2 and D1.6 codes. **Who will score and analyze the data:** Departmental faculty

5. Weld 6" OD steel tubing in the 1G, 2G, and 5G positions with the GTAW process.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in

meeting AWS D1.1 code.

Standard of success to be used for this assessment: 80% of students will

create welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

6. Weld a butt joint in the flat and vertical positions with the OAW and GTAW processes.

Assessment 1

Assessment Tool: Welded samples

Assessment Date: Fall 2012

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The welds will be measured as pass or fail in

accordance with AWS A5.7 code.

Standard of success to be used for this assessment: 80% of students will

create welds in accordance with AWS A5.7 code.

Who will score and analyze the data: Departmental faculty

Course Objectives

1. Demonstrate proper shop safety while working in the welding lab.

Matched Outcomes

2. Recall specific welding theories as applied to the various assigned welds.

Matched Outcomes

3. Weld an outside corner joint on grey cast iron in the flat position with the OAW and GTAW processes.

Matched Outcomes

4. Weld a butt joint on aluminum in the flat and vertical positions with the OAW process.

Matched Outcomes

5. Weld a butt joint in the flat and vertical positions on copper plate with the OAW and GTAW processes.

Matched Outcomes

6. Build-up hard-surfacing material on 1/4" steel with the OAW and GTAW processes to repair worn base metal.

Matched Outcomes

7. Weld an outside corner and a lap joint on 1/4" steel in the horizontal, vertical and overhead positions with the GMAW process using carbon dioxide for shielding gas.

Matched Outcomes

8. Weld a V-groove in the flat and vertical positions using 308 stainless for the root pass with the SMAW process.

Matched Outcomes

9. Use stringer and weave beads for hot and cover passes.

Matched Outcomes

10. In the 5G position, student will deposit root pass using 308 stainless then run mild steel stringer and weave bead for filler and cover.

Matched Outcomes

11. Weld 6" OD steel tubing with GTAW in the 1G, 2G and 5G positions.

Matched Outcomes

12. Weld an outside corner joint in the horizontal and vertical positions with the GMAW process.

Matched Outcomes

13. Weld a 1/2" V-groove joint in the vertical positions with E6010.

Matched Outcomes

14. Weld a butt joint in the flat and vertical position on stainless steel with the OFW process.

Matched Outcomes

New Resources for Course Course Textbooks/Resources

Textbooks Manuals

Periodicals Software

Equipment/Facilities Level III classroom

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Amanda Scheffler	Faculty Preparer	Aug 08, 2011
Department Chair/Area Director:		
Glenn Kay II	Recommend Approval	Oct 05, 2011
Dean:		
Ross Gordon	Recommend Approval	Oct 18, 2011
Vice President for Instruction:		
Stuart Blacklaw	Approve	Nov 15, 2011